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Abstract

We study certain mild degenerations of algebraic varieties which appear in the analysis of a large
class of supersymmetric theories, including superstring theory. We analyze Witten’sσ-model [Nucl.
Phys. B 403 (1993) 159] and find that the non-transversality of the superpotential induces additional
singularities and a stratification of the ground state variety. This stratified variety admits certain
homology groups such that⊕qH

2q satisfies the “Kähler package” of requirements [Ann. Math.
Studies 102 (1982) 303]. Also, this⊕qH

2q extends the “flopped” pair of small resolutions [Nucl.
Phys. B 416 (1994) 414; Nucl. Phys. B 330 (1990) 49; Commun. Math. Phys. 119 (1988) 431]
to an “(exo)flopped” triple, and is compatible with both mirror symmetry [S.-T. Yau (Ed.), Mirror
Manifolds, International Press, Hong Kong, 1990; B. Greene, S.-T. Yau (Eds.), Mirror Manifolds
II, International Press, Hong Kong, 1996] and string theory [Mod. Phys. Lett. A 12 (1997) 521;
Nucl. Phys. B 451 (1995) 96] results. Finally, we revisit the conifold transition [Nucl. Phys. B 330
(1990) 49] as it applies in our formalism.
© 2004 Published by Elsevier B.V.
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1. Introduction, results and summary

In string theory, rather than being an assumed arena, the spacetime is identified with the
dynamically determined ‘ground state variety’ of a (supersymmetric)σ-model[11,20,23].
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In the simplest physically interesting and non-trivial case[3,23], the spacetime is of the
formM3,1 × K, whereK is a compact Calabi-Yau three-fold modeled from the (bosonic
subset of the) ‘field space’ of theσ-model1, F = {p, s0, . . . , s4} � C

6, which admits aC∗
action:

λ̂ : {p, s0, . . . , s4} 	→ {λ−5p, λs0, . . . , λs5}, λ ∈ C
∗. (1)

The ‘ground state variety’ is defined to be[2,23]

V
def= [(∂W)−1(0)− 0]/λ̂, (2)

with theλ̂-invariant holomorphic ‘superpotential’

W
def=p ·G(s). (3)

Alternatively, we denote bȳ̂λ the|λ| = 1 restriction of the map(1), and define the ‘potential’

Ur
def=‖∂W‖2 +D2

r , (4)

where

Dr
def=‖s‖2 − 5|p|2 − r, r ∈ R. (5)

Then
V � [U−1

r (0)− 0]/ ˆ̄λ. (6)

Due to the positive definiteness ofUr,

U−1
r (0) = (∂W)−1(0) ∩D−1

r (0). (7)

Furthermore, thêλ-invariance ofW = pG implies thatG(s) is a degree-5 homogeneous
complex polynomial

G(λs0, . . . , λs4) = λ5G(s0, . . . , s4), (8)

whereupon the zero locus of∂W is the intersection of the cones

(∂W)−1(0) = G−1(0) ∩ (p · ∂sG)−1(0). (9)

The above definition may then be rephrased as follows.

Definition 1. Given the polynomialsG(s)andDr as defined inEqs. (8) and (5), respectively,
the ‘ground state variety’ is

V= {G−1(0) ∩ (p · ∂sG)−1(0)− 0}/λ̂
= {G−1(0) ∩ (p · ∂sG)−1(0) ∩D−1

r (0)− 0}/ ˆ̄λ, (10)

where theS1-action, ˆ̄λ, in the latter (symplectic) quotient is the|λ| = 1 restriction of the
C
∗-action(1) in the former (holomorphic) quotient.
V+ (V−) shall denote the restriction ofV to positive (negative) values ofr in Eq. (5).

1 To avoid obscuringly complicated notation, we focus on a simple example and discuss generalizations later.
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Remark. As we show in more detail inSection 2, the r dependence inUr, in Eq. (5),
turns the ‘ground state variety’ into a 1-parameter family of (stratified) varieties2, and the
subtraction of zero inEq. (10)separates the two branches,V±, defined withr > 0 and
r < 0, respectively. Moreover, the dependence onr, as defined originally in the gauged
linearσ-model[23], is complicated nearr = 0 by quantum corrections and we restrict to
r �= 0.

Our main result is the following theorem.

Theorem 1. LetV, the‘ground state variety’ (seeDefinition 1) of the gauged linearσ-model
[23].Suppose that the polynomialG(s) is non-transversal atn isolated rays,s�i , i = 1, . . . , n.
Then

1. V+ is a stratified variety[9] andV+ =M� ∪⋃
i Ai withM� = G−1(0) is a projective

hypersurface withn isolated nodes, where then non-compact antennae components
Ai � C

1 are attached.
2. WhendimC V

+ = 3, the minimal holomorphic compactification̄V
+ = M� ∪ ⋃

i Āi
satisfies:
a. V̄

+
is an exoflop of the small resolution(s) ofM� in the sense of[2], and

b. ⊕qH
2q(V̄

+
) satisfies the“Kähler package” of requirements[9], and is compatible

with mirror symmetry[24] and string theory[17,22].

Remark (on generalizations). Generalizations of the above construction involve: (a) ad-
ditional p and s variables, (b) additional corresponding terms in the superpotential(3):
W → ∑

i p
iGi(s), and (c) additional maps(1) and their modifications where the exponents

of λ̂ are different integers: negative for thep’s, positive for thes’s. The generalization (c)
turns theC

∗ action(1) into a more general toric action, while (a) enlarges the field space
and (b) modifies the “moment map”(3) accordingly. For a Calabi-Yau model,

∏
i Gi(s) is

a fixed to be section of the anticanonical bundle of the toric variety(Fs − �)/λ̂s, where
λ̂s is the restriction of̂λ to Fs �≡ F|pi=0 and� its fixed point set. The resulting ‘ground
state varieties’ will thus include intersections of hypersurfaces in products of toric varieties
[2,8,12,23]. All of these are of the form given in theDefinition 1, with the ‘ingredients’
{(p, s), λ̂,Dr,W} duly modified. It should be clear that the mainTheorem 1then general-
izes to the full class of intersections of hypersurfaces in products of toric varieties. Owing to
Bertini’s theorem, their “mild degenerations” studied herein form a subclass of codimension
one, and connect the moduli spaces of all known Calabi-Yau three-folds[4,10,16,21].

Remark (on applications). Within the framework of Witten’sσ-model [23], our analy-
sis embeds these algebro-geometric results into string theory, and also gives an algebro-
geometric interpretation of the string-theoretic results[17,22]. However, in this sense, the
present results correspond only to the “untwisted sector” and only in “closed string theories”.

2 The general category of ‘stratified varieties’ is specified for example in the works[9]. Our situation is far
simpler: we will encounter unions of several (complex, algebraic) varieties of complex dimension 0, . . . ,3,
possibly connected at codimension≥ 1 subspaces.
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In particular, the elements of the “twisted sector” (related to the non-trivialC
∗-action on

the antennae) and the “fractional branes” (associated to the nodes) particular to “open string
theories”[1,13–15,18,19]remain without a corresponding image at present. Nevertheless,
in addition and in agreement with Ref.[2], our results prove that the codimension one
subgeneric spacetime in string theory is a non-trivial stratified pseudovariety.

This article is organized as follows:Section 2shows that the ‘ground state variety’ be-
comes stratified asG(s) becomes non-transversal, and we explore the induced (exo-)strata3

and their union.Section 3explores the contribution of the induced (exo-)strata to the ho-
mology of the ‘ground state variety’.Section 4re-examines the ‘conifold transition’ of Ref.
[4] in view of Theorem 1.

2. The ground state variety

We now turn to analyze the geometry of the ground state variety, as determined by the
choice of the homogeneous holomorphic polynomialG(s). Such polynomials typically
depend on a multitude of parameters; when properly accounted for redundancies, these
span (a subspace of) the moduli space of the ground state variety. Thus, we automatically
have a family of ground state varieties, fibered over this (partial) moduli space. Works in
the literature, Ref.[23] and the subsequent studies, all assumedG(s) to be transversal and
so have explored the generic fibre of this family. We begin by analyzing this case in some
detail, and then turn to the less generic mild degenerations of the fibre.

2.1. The transversal case

G(s) being transversal4, G = dG = 0 only at s = 0. In this case, the zero locus of
∂W = (G, p · ∂sG) is a union of two branches5:

(G)−1(0) ∩ (p · ∂sG)−1(0) = {p = 0, s : G(s) = 0} ∪ {p, s = 0}. (11)

So, following the first (holomorphic quotient) part ofDefinition 1, we have that

V = {p = 0, s : G(s) = 0}/λ̂ ∪ {p, s = 0}/λ̂, (12)

where the quotients are taken after the fixed point of theλ̂-action,{s, p = 0}, is excised.
Now, since{s �= 0}/λ̂ is P

4, then

{p = 0, s �= 0 :G(s) = 0}/λ̂ =M (13)

is the Calabi-Yau quintic hypersurface inP
4.

3 We will use the prefix ‘exo’ to denote (components of) strata that are ‘external’ to the ‘main’ stratum.
4 Transversality ensures that the projective hypersurface defined byG = 0 is smooth.
5 The subsequent analysis for non-transversalG, the case of our real interest, is more detailed and shown below.

The Reader can then recover the presently omitted details as a special case; see also Ref.[23].
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Fig. 1. The ground state variety,V ∈ F, and its ‘geometric’ phase,M ∈ F |p=0, in the top right inset. This inset
representsM = G−1(0) ∩ P4, in F |p=0 ≈ C5 spanned bys = (s0, . . . , s4). The dashed grey arrows identify the
image under the projection alongp of this in the full field space,F ≈ C6, spanned by(p, s0, . . . , s5).

The second term in the union(12) is

{p �= 0, s = 0}/λ̂ � C
∗/C∗ � {pt.}/Z5. (14)

This is the ‘fuzzy point’[2] of the Landau–Ginzburg orbifold.Z5 is the subgroup of̂λwhich
leavesG(s) invariant and so acts trivially on bothW = p ·G(s) and onp.

The two quotients in the union(12) are thus manifestly disconnected: the former,(13),
lies entirely in the{p = 0, s �= 0}-subspace of the field spaceF, whereas the latter,(14),
lies well in the complementary{p �= 0, s = 0}-subspace. The above is illustrated inFig. 1.
Even in the transversal case,V may be regarded as a stratified variety, consisting of two
disconnected objects: a (complex) three-dimensional one and a (complex) zero-dimensional
one, each of which containing a single variety:M and{pt.}/Z5, respectively.

In fact, the second component,{pt.}/Z5, actually lies in the ‘second sheet’ of the field
spaceF. To see this, it will be useful to also presentV using the alternate (symplectic
quotient)Definition 1:

1. Whenr � 0,D−1
r (0) �= 0 implies that‖s‖2 �= 0, and so∂sG �= 0 asG is transversal.

Then,(∂W)−1(0) lies entirely in the(p = 0) s-hyperplane, andV is theλ̂-quotient, i.e.,
the complex base of the coneG−1(0). Then,V =M ≡ [{p = 0} ∩G−1(0)]/λ̂. Since
{s �= 0}/λ̂ = P

4, theprojectiveCalabi-Yau quintic hypersurface(13) is G−1(0)/λ̂ =
M ↪→ P

4.
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2. Whenr � 0,D−1
r (0) �= 0 implies that|p|2 �= 0, and so‖s‖2 = 0 sinceG is transversal.

Then, (∂W)−1(0) lies entirely in complex thep-plane, and is the ‘fuzzy point’[2],
{|p| = √|r|/5}/Z5, of the Landau–Ginzburg orbifold(14).

At the critical pointr = 0, these two branches formally collapse to the highly degenerate
pointp, s = 0, which is the branching point of the two ‘sheets’ of the field spaceF. This
point is, by definition, excised before taking the quotients(2). Indeed, for applications
to string theory, the preceding analysis is not to be trusted in the region nearp, s = 0
since quantum corrections modify the map(5) and so also the structure of the quotients
in Definition 1; see Ref.[23]. For this reason, we will mostly concern ourselves with the
r � 0 ‘sheet’, and comment on occasion on ther � 0 ‘sheet’, but leave any ‘connection’
between the two ‘sheets’ unexplored for now.

2.2. The conifold with exocurves

Unlike Ref. [23] and subsequent work, we will be concerned with ground state vari-
eties using homogeneous holomorphic polynomialsG(s) which are non-transversal along
n isolated (complex) directions:

∂G(s) = 0 ⇒ s = s
�
j, j = 1, . . . , n. (15)

Clearly,{s�j} � C
1, and we denote byBn=def �nj=1 {s�j} the ‘bouquet’ ofn C

1’s all meeting
at the origin. SinceG(s) is holomorphic and homogeneous,∂G(s) = 0 impliess ·∂sG(s) =
5G(s) = 0 and theG(s) = 0 condition is automatically satisfied onBn. Thus, we find that

(G)−1(0) ∩ (p · ∂sG)−1(0) = {p = 0, s �= s
�
j : G(s) = 0} ∪ {{p} × Bn}. (16)

So, following the first (holomorphic quotient) part ofDefinition 1, we now have that

V = {p = 0, s �= s
�
j : G(s) = 0}/λ̂ ∪ {{p} × Bn}/λ̂; (17)

again, the quotients are taken after the fixed point of theλ̂-action,{s, p = 0}, is excised.
Now, since{s �= 0, s�j}/λ̂ equalsP4 without its points whereG(s)|P4 is non-transversal,
then

{p = 0, s �= 0, s�j : G(s) = 0}/λ̂ =M� − Sing(M�) (18)

is the non-singular (and non-compact) part of the conifold6M� ↪→ P
4. Note that

Sing(M�)
def= {p = 0, s = s

�
j : G(s) = 0}/λ̂

=
n⋃
j=1

{p = 0, s = s
�
j}/λ̂ =

n⋃
j=1

x
�
j ⊂M�, (19)

6 Following Ref. [4], a conifold is a variety which is smooth except for a finite number of isolated conical
singularities. Furthermore, herein we will consider only varieties with nodes (double points).
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sinceG(s�j) = 0; x�j are the singular points of

M�def= [{p = 0} ∩G−1(0)]/λ̂. (20)

The second quotient in the union(17) is quite more intricate. Settingp = 0 in Eq. (5), we
see that{{p} × Bn}/λ̂ is non-empty in ther > 0 ‘sheet’ of the field spaceF, and also that
it includes the points{p = 0, s�j �= 0}/λ̂ = Sing(M�). On the other hand,

({{p} × Bn}/λ̂) = �nj=1Aj, Aj
def={p, s�j}/λ̂. (21)

Each of theAj ’s contains precisely one of the singular points ofM�, as given inEq. (19)

x
�
j = {p = 0, s�j}/λ̂ = Aj ∩M�. (22)

Thus, ground state variety(17), which is theconnectedunion of(21)and of(18), is then

V =M� ∪ n�
j=1
Aj. (23)

That is, the (r > 0 ‘sheet’ of the) ground state variety is the conifoldM�, with an exocurve,
Aj, attached at each singular point.

In the other,r < 0 ‘sheet’ of the field spaceF, the first term in the union(5) turns out
to be empty. On the other hand, the second one is not since{p, s = s

�
j} does include the

complexp-plane in whichEq. (5)shows thatr < 0. In this case, the second term in the unio
(17)again turns out to be of the form(21), except this time theAj ’s have a single common
point, the Landau–Ginzburg orbifold(14).

Alternatively, consider the symplectic quotient: impose the vanishing ofDr, i.e., intersect
withD−1

r (0), and pass to theS1-quotient. To this end, consider each term in the union(16)
separately.

• r > 0
NowDr = 0 implies that

‖s‖2 − 5|p|2 = r > 0,⇒ ‖s‖2 ≥ |r| > 0. (24)

The ground state variety now is theS1-quotient of the union:

{p = 0, s �= s
�
j : G(s) = 0, ‖s‖2 = r} ∪ {p, s = s

�
j : ‖s‖2 = r+}, (25)

where

r+ = 5|p|2 + |r|. (26)

Note that thep = 0 points of the second component, where‖s‖2 = r+ = r, the

{(p, s) = (0, s�j) : ‖s‖2 = r} (27)

points are thes → s
�
j limiting points of the first component, sinceG(s�j) = 0. TheS1

quotient of these are the (nodal) singular points of the conifold(20), and they connect
the two terms in the union(25). This then becomesM� ∪ �jAj, just as obtained using
the holomorphic quotient(23).
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• r < 0 NowDr = 0 implies that

‖s‖2 − 5|p|2 = r < 0,⇒ |p| ≥
√
|r|/5> 0. (28)

This renders the first term in the union(12)empty, and the ground state variety now is:

{p, s = s
�
j : ‖s‖2 = r−}/S1, (29)

where now

r− = ‖s�j‖2 + |r|. (30)

Note that ats = 0 = r−, where|p| = √|r|/5, the

{p, s = 0 : 5|p|2 = r}/S1 (31)

point is common to all components of the second component, and is the ‘fuzzy point’ of
the Landau–Ginzburg orbifold(14).

The foregoing proves the following lemma.

Lemma 1. With the‘ ingredients’, {(p, s), λ̂,Dr,W}, defined as inEqs. (1) and (5)and(3),
ther > 0 ‘sheet’ of the ground state variety(Definition 1),V+, becomes a stratified variety,
M� ∪ �jAj whenG(s) is non-transversal as specified inEq. (15).

Remark. The ‘main’ stratum(18) has complex dimension 3, while the ‘exocurves’(21)
minus the singular pointsx�j form the complex dimension 1 stratum; the singular points,

�jx�j = Sing(M�), form the complex dimension 0 stratum.

Corollary 1. Under the same conditions as inLemma 1, the r < 0 ‘sheet’ of the ground
state variety, V−, is the stratified variety: the union of the exocurves(21),∪jAj, connected
at the‘ fuzzy point’ of the Landau–Ginzburg orbifold(14).

Remark. Ther < 0 stratified variety consists of the exocurvesAj minus the ‘fuzzy point’
which form the complex dimension 1 stratum, and the ‘fuzzy point’(14) which forms the
complex dimension 0 stratum.

The resulting non-transversal ground state variety is illustrated inFig. 2.

Remark. Since the ‘fuzzy point’ of the Landau–Ginzburg orbifold(14)may be, formally,
considered as the (negative size) collapse (or, perhaps more properly, analytic continuation)
of the three-dimensional Calabi-Yau varietyM, the same relation remains betweenV+ and
V−, regardless of the (non)transversality ofG(s).

2.3. The exocurves

We now turn to study the exocurves,Aj, in some detail. In particular, we prove the
following lemma.
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Fig. 2. A non-transversal ground state variety,V ∈ F, and its ‘geometric’ phase,M� = G−1(0) ∩ P4, in the top
left inset. The rayss�j pass through the nodes ofM�, x�j , which is where the exocurves,A+

j , attach toM� in the
r > 0 ‘sheet’. In ther < 0 ‘sheet’, the exocurvesA−

j all meet at the Landau–Ginzburg ‘fuzzy point’.

Lemma 2. In ther > 0 ‘sheet’ of the field space, F, the exocurves(21)are

A+
j � CP

1
[−5,1] � C

1. (32)

Proof. In ther > 0 ‘sheet’, the definition(21)of the exocurve:

A+
j

def={p, s�j}/λ̂, (33)

includes implicitly that‖s‖2 ≥ |r| > 0 owing toEq. (24), and the superscript ‘+’ reminds
thatr > 0. That is,

(p, s
�
j)

∼= (λ−5p, λs
�
j), λ ∈ C

∗, (34)

which definesA+
j as the weighted projective spaceA+

j = P
1
[−5,1], proving the first part of

(33). This case, however, differs from the usual consideration of weighted projective spaces
[5] in that the weights,−5 and 1, are of opposite sign. Still, we proceed by considering the
two candidate charts:

Up = (p, s
�
j)p

∼= (1, up), p �= 0, up
def= s�j p1/5 (35)

and

Us = (p, s
�
j)s

∼= (us,1), s
�
j �= 0, us

def=p(s�j)5. (36)

In both cases, the equivalences are obtained using the map(34), however withλ = p1/5

in the first case, andλ = (s
�
j)

−1 in the second. Now, in the second candidate chart,Us, the
limit point p, us → 0 is included, and so

Us = (p, s
�
j)s

∼= (us,1) � C
1 (37)
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is a proper chart. On the other hand, in the first candidate chart,Up, the limit points�j, up → 0
is excludedby the inequality(24), so that

Up = (p, s
�
j)p

∼= (1, up) � C
∗ (38)

is not a proper chart. In its place, we should introduce twoC
1-like charts which coverUp.

However, this will not really be necessary sinceEqs. (35) and (36)imply that

us = p(s
�
j)

5 	→ u5
p, (39)

which is a 1-to-5 holomorphic map outsideus = 0. That is,Up = (1, up) � C
∗ is a

five-fold cover of(Us − 0) = (us,1)us �=0 � C
∗; us = 0 is of course the branching point

of this holomorphic covering. Therefore,A+
j may be parametrized byus and soA+

j � Us.
With (39)as the ‘glueing map’, we then have that thejth exocurve is:

A+
j � P

1
[−5,1] = Up ∪ Us = Us � C

1. (40)

�

Lemma 3. In ther < 0 ‘sheet’ of the field space, F, the exocurves(21)are

A−
j � CP

1,−
[−5,1] � C

1/Z5. (41)

Proof. In ther < 0 ‘sheet’, the definitions(33) and (34)still guarantees thatA−
j � P

1,−
[−5,1],

but nowEq. (28)enforces|p|2 ≥ |r| > 0, as indicated by the superscript ‘−’. We again
proceed by considering the two candidate charts(35) and (36). This time, it is in the first
candidate chart,Up, that the limit points�j, up → 0 is included, and so

Up = (p, s
�
j)p

∼= (1, up) � C
1 (42)

is a proper chart. Similarly, in is now the second candidate chart,Us, from which the limit
pointp, us → 0 isexcludedby the inequality(28), so that

Us = (p, s
�
j)s

∼= (us,1) � C
∗ (43)

is nota proper chart. Again, it is not necessary to introduce twoC
1-like charts to coverUs,

sinceEqs. (35) and (36)again imply the 1-to-5 holomorphic map(39)now outsideup = 0.
Now (Up − 0) = (1, up �= 0) � C

∗ is a five-fold cover ofUs = (us,1) � C
∗, andup = 0

is of course the branching point of this holomorphic covering. Therefore,A−
j now must be

parametrized byup which is five-fold redundant except atup = 0. Therefore, we now have
that thejth exocurve is:

A−
j � P

1,−
[−5,1] = (Up ∪ Us)/Z5 = Up/Z5 � C

1/Z5. (44)

�

Remark. Note that theZ5 quotient inLemma 3precisely corresponds to theZ5 quotient
in Eq. (14). Indeed, this says that the “fuzzy point” of the Landau–Ginzburg orbifold(14)
becomes

(�nj=1A
−
j ) � (C1/Z5)

∨5, (45)
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Fig. 3. Over the non-transversal rays,s�j , of G(s) the complex variablep is subject only to the projectivization

action,λ̂. The resulting space, the exocurveP1
[−5,1] = {p, s�j}/λ̂, is illustrated here for both ther > 0 ‘sheet’ (A+

j ),

and ther < 0 ‘sheet’ (A−
j ).

i.e., the ‘plum product’ of five copies of theC1/Z5 cone, all connected at the vertex—the
“fuzzy point” (14).

The exocurves are illustrated inFig. 3.

2.4. A comparison

For comparison, we include a similar analysis ofP
1
[5,1]. In contrast to the non-compact

P
1
[−5,1], the weighted projective spaceP

1
[5,1] will prove to be compact.

Again, it is possible to viewP1
[5,1] both as a holomorphic quotient,

P
1
[5,1] � {q, s}/µ̂ (46)

where

µ̂ : (q, s) 	→ (µ5q, µs), µ ∈ C
∗ (47)

and also as a symplectic quotient,

P
1
[5,1] � {{q, s} ∩�−1

r (0)}/S1 (48)
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where theS1-action is the restriction of(47) to |µ| = 1 andEq. (5)now becomes

�r = |s|2 + 5|q|2 − r, r ∈ R. (49)

Following the proofs ofLemmas 2 and 3, we consider the latter.
The vanishing of�r now simply states that

|s|2 + 5|q|2 = r ≥ 0, (50)

wherer = 0 would forces = 0 = q, the trivial solution. Restricting then tor �= 0, Eq. (50)
implies the positive definiteness ofr on �−1

r (0), so that there is only ther > 0 sheet.
Indeed, this is precisely why ther < 0 sheet ofP1

[−5,1] appears to be rather unfamiliar an
object. Owing to the inequality(50), s, qmust not vanishsimultaneously; either one of them
however may very well vanish while the other one is non-zero. Thus, unlike in the case of
P

1
[−5,1], we now have two perfectly proper coordinate charts:

Uq = (q, s)q ∼= (1, uq) � C
1, using µ = q−1/5, q �= 0, uq = sq−1/5 (51)

and

Us = (q, s)s ∼= (us,1) � C
1 using µ = s−1, s �= 0, us = qs−5. (52)

The two chart coordinates,uq andus, respectively,canattain the value of 0, sinces, uq → 0
is permitted inUq whereq �= 0, andq, us → 0 is permitted inUs wheres �= 0. Finally, the
two charts are glued through the relation

us = u−5
q , where us, uq �= 0, (53)

which provides a 1–5 map:

{Us − 0} 1–5−→ {Uq − 0}. (54)

To render the map(53) single-valued, we may glue togetherUs andUq/Z5 : 0 ∈ Us
becomes ‘∞’ added toUq/Z5, and 0∈ Uq/Z5 becomes ‘∞’ added toUs. The resulting
space,P1

[5,1] = Us ∪ (Uq/Z5), then is compact and smooth except at 0∈ Uq/Z5, where

P
1
[5,1] has aZ5 quotient singularity, i.e., a conical singularity with(1− (1/5))2π = 8π/5

deficit angle.
Note, however, that by Delorme’s lemma[6],P1

[k,1] ≈ P
1
[1,1] ≡ P

1 � S2. The relationship
‘≈’ here denotes ak-to-1 map of the coordinates as used here, but an isomorphism of the
corresponding coordinate rings, which then extends to an isomorphism of the respective
spaces[7].

2.5. A one-point compactification of exocurves

For later convenience and use, we describe here a one-point compactifications of the
exocurves.

It is straightforward from the proof of lemmas(2) that the limiting points, up → ∞ may
be added toUp. Upon the inversion of its variables, this now becomes a proper coordinate
chart:

Ũp = (1, wp) � C
1, wp

def=u−1
p = s

�−1
j p−1/5. (55)
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Clearly, the glueing map now becomes

us = w−5
p : {Us − 0} 1–5−→ {Ũp − 0}. (56)

To render the glueing map(56)single-valued, we form

Ā+
j

def=Us ∪ (Ũp/Z5) � P
1
[5,1]. (57)

As shown above, this is compact and isomorphic toP
1 � S2.

3. Cohomology and homology of V̄

As presented inTheorem 1, the stratified variety can be written as

V̄ =M� ∪
n⋃
j=1

Āj, M� ∩ Āj = x
�
j. (58)

The Mayer–Vietoris principle then induces the long exact cohomology sequence

· · ·→Hq(V̄)→ Hq(M�)⊕Hq(∪jĀj)→ Hq(M� ∩ ∪jĀj)
→Hq+1(V̄)→ · · · (59)

Since

M� ∩ ∪jĀj = ∪j(M� ∩ Āj) = �jx�j, (60)

owing to our assumption thatx�j are isolated (non-overlapping) nodes, and

Hq(∪jx�j) =
n⊕
j=1
Hq(x

�
j) � δq,0C

⊕n, (61)

the long exact sequence(59)breaks into five isomorphisms:

Hq(V̄) = Hq(M�)⊕Hq(∪jĀj), for q = 2, . . . ,6 (62)

and

0 → H0(V̄)
α−→H0(M�)⊕H0(∪jĀj) β−→H0(�jx�j)→ H1(V̄)→ 0. (63)

The above mapβ is induced from the injective inclusion�jx�j = M� ∩ (supj Āj) →
M� � (∪jĀj), and so is surjective. Then:

H1(V̄) = ∅ and H0(V̄) � C. (64)



44 T. Hübsch, A. Rahman / Journal of Geometry and Physics 53 (2005) 31–48

3.1. Contributions from the antennae

Recall from a previous section thatĀj � P
1 � S2. Then,

Hq(Āj)

{
� C

1 for q = 0,2,

= ∅ otherwise.
(65)

With this, forM� with n simple nodes,Eqs. (62) and (64)would seem to imply that
Hq(V) should equal toHq(M�), except forq = 2, where it ought to be augmented by
H2(∪jĀj) � ⊕C

⊕n.
This, however, is not correct: the (area) 2-forms of then antennae are not independent

cohomology elements. As described in detail in Ref.[16], N mutually exclusive subsets
of the nx�j ’s lie on corresponding 4-cyclesC(4)k ⊂ M�, k = 1, . . . , N. Let Jk denote the

multi-index containing the indices,j, of all x�j ’s that lie onC(4)k . Clearly then,

Āj ∩ C(4)k =
{
x
�
j if j ∈ Jk i.e. x�j ∈ C(4)k ,

∅ otherwise.
(66)

Considering then thehomologyelements inHq(V̄), dual to the cohomology group obtained
in Eqs. (62) and (64), and denoting them by square brackets, we have:

[Āj] ∩ [C(4)k ] =
{

1 if j ∈ Jk,
0 otherwise.

(67)

Owing to this result, it follows that

[Āj] = [Āj′ ] if j, j′ ∈ Jk, [Āj] �= [Āj′ ] otherwise. (68)

That is, then antennae,{Āj} contribute onlyN inequivalent 2-cycles, so

H2(∪jĀj) � C
⊕N � H2(∪jĀj). (69)

3.2. The combined result

CombiningEqs. (62), (64) and (69)proves the following lemma.

Lemma 4. Let V̄ as defined inEq. (58), whereM� is a conifold with only n isolated nodes
(x�j) lying on N distinct4-cyclesC(4)k , andĀj as defined inEq. (57). Then,

Hq(V̄) =
{
Hq(M�) for q �= 2,

H2(M�)⊕H2(∪jĀj) � H2(M�)⊕ C
⊕N.

(70)

As it stands, withH3(V̄) = H3(M�), thecompleteH∗(V̄) can have neither Poincaré
duality nor a Hodge decomposition. Both are obstructed by the fact that the 3-cycle(s) which
pass through thex�j ’s remain without dual 3-cycle(s)[16]. In fact, the subgroup ofH3(V̄)
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generated by the 3-cycles passing through thex
�
j ’s may well be odd-dimensional, making

this obstruction manifest.
However,⊕qH

2q(V̄) subgroup does exhibit both Poincaré duality and a Hodge decom-
position. As usual,H2(Āj) � C

1 is generated by the volume (1,1)-form onĀj � P
1.

Moreover, dually to the homology result(67), the volume (1,1)-forms,ωj(1,1), of all Āj ’s

which intersectC(4)k are dual to the (2,2)-formωk(2,2), itself dual toC(4)k . In fact, the double

dualities7

ω
j

(1,1)
∗∼[Āj]

∗∼[C(4)k ] and [Āj]
#∼[C(4)k ]

#∼ωk(2,2), for j ∈ Jk, (71)

establishes the isomorphisms

ω
j

(1,1) � [C(4)k ] and [Āj] � ωk(2,2), for j ∈ Jk, (72)

whereuponEq. (68)implies that also

[ωj(1,1)] = [ωj
′
(1,1)] if j, j′ ∈ Jk, [ωj(1,1)] �= [ωj

′
(1,1)] otherwise. (73)

On a more formal level,Eq. (67)implies that also

[ωj(1,1)] ∪ [ωk(2,2)] =
{

1 if j ∈ Jk,
0 otherwise.

(74)

Clearly, the evaluation map of the cup product here cannot be the integration (of the wedge
product of the indicated forms) over the stratified varietyV̄ in any conventional sense.
Instead, it may be taken to reduce to the evaluation over the point of common support,
x
�
j = Āj ∩ C(4)k if j ∈ Jk, and is vacuous otherwise.

Owing to the isomorphisms(72), the [Āj]∼∗[C(4)k ] duality (whenj ∈ Jk) implies the

desired Poincaré duality ofωj(1,1)∼∗ωk(2,2), for all j ∈ Jk. Let 〈ωk(2,2)〉 denote the subgroup

ofH(2,2)(M�) generated by theωk(2,2)’s. The quotientH(2,2)(M�)/ωk(2,2) is then generated

by the (2,2)-forms dual to 4-cycles which do not pass throughx
�
j; this quotient is easily seen

to form an additive group, exhibiting both Poincaré duality and Hodge decomposition.
The foregoing then proves the following lemma.

Lemma 5. Let V̄ as defined inEq. (58), whereM� is a conifold with only n isolated nodes
(x�j) lying on N distinct4-cyclesC(4)k , andĀj as defined inEq. (57). Then,

⊕qH
2q(V̄) =

{
H2q(M�) for q �= 1,

H2(M�)⊕H2(∪jĀj) � H2(M�)⊕ C
⊕N,

(75)

has both an induced Hodge decomposition and Poincaré duality, as induced by the double
dualities(71).

7 By ∼∗ we denote the standard homology–cohomology duality, and use∼# for Poincaŕe duality.
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4. Deformations, resolutions and the mirror map

We have originally restrictedM� to conifolds with only nodes (i.e., double points, orA1

hypersurface singularities),x�j. Their local neighborhood is isomorphic to the coneC
4/Q,

whereQ is a non-degenerate quadratic polynomial overC
4. In a small resolution, this neigh-

borhood is replaced with a copy of the total space of anO(−1,−1)
def=O(−1)⊕O(−1)bundle

overP
1 � S2. In short, a small resolution replaces each nodex

�
j with a (−1,−1)-curve,

P
1
,,j � S2. Since there are two topologically distinct ways to do this at each nodex

�
j, a

conifoldM� with n would appear to have 2n small resolutions,M,
I . However, all nodes

x
�
j which lie on a single 4-cycleC(4)k ⊂M� must be resolved “compatibly”: all the corre-

sponding 2-spheresP1
,,j ∈M,

I intersectC(4),,k ∈M,
I (the proper transform ofC(4)k ⊂M�)

in a single point and so must all represent the same element ofH2(M
,
I), the one that is dual

toC(4),,k . With the use ofEq. (66), this implies that

[ω,,j(1,1)] = [ω,,j
′

(1,1)] if j, j′ ∈ Jk, [ω,,j(1,1)] �= [ω,,j
′

(1,1)] otherwise (76)

and

[ω,,j(1,1)] ∪ [ω,,k(2,2)] =
{

1 if j ∈ Jk,
0 otherwise,

(77)

for

H2(M
,
I) ) P

1
,,j

∗∼ω,,j(1,1) ∈ H(1,1)(M,
I), (78)

H4(M
,
I) ) C(4),,k

∗∼ω,,k(2,2) ∈ H(2,2)(M,
I). (79)

Of course, inEq. (77), the cup product is indeed obtained as the ordinary wedge product,
integrated over the (smooth) manifoldM,

I Consequently, the multiplicity of small reso-

lutions toI = 1, . . . ,2N , whereN is the number ofH2(M
,
I) elements which the small

resolution exceptional sets,P
1
,,j represent, i.e., the number ofH4(M

,
I) elements,C(4),,k ,

which are the proper transforms of the 4-cycles that pass through the nodesx
�
j ∈ M�

[16].
The formal identity of theEqs. (73) and (74)with theEqs. (76) and (77)then proves the

following lemma.

Lemma 6. LetM� be a Calabi-Yau complex3-dimensional algebraic variety with only a
finite number of isolated nodes, x�j. LetM,

1 andM,
2 denote two small resolutions ofM�,

related by a flop:M,
1↔fM,

2. Finally, let V̄ be the compactification of the stratified variety
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(58). Then the flop involutionM,
1↔fM,

2 generalizes to a triple of(exo) flops:

(80)

The map “defo” to the left is realized as follows: Deformations smoothM� by replacing the
local conesC4/Q centered at each node,x�j, with a real 3-bundle over a copy ofS3. It is easy
to see that a deformation ofG(s) from the non-transversal choiceEq. (15)to a transversal
choice inSection 2.1precisely induces the smoothing of the ground state variety from a
(compactified) stratified variety of the type described inSection 2.2to a smooth Calabi-Yau
three-fold of the type described inSection 2.1. This provides the mapM.↔defoV̄ in the
diagram inLemma 6.

Finally, we note that the above described homology ofV̄ excluding the middle dimension,
which we have not discussed herein, satisfies the requirements given in Ref.[17], and so is
compatible with the ‘mirror map’. The extension of this result to include the (co)homology
groups in the middle dimension remains an open question for now and we hope to return
to it in a future effort.
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